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SUMMARY 

The capacitance matrix method has been implemented in a primitive equation ocean model to accommodate 
islands and portions of irregular coastal boundaries that cannot be treated adequately by boundary-fitted 
orthogonal curvilinear co-ordinates. The algorithm preserves the ability to solve the streamfunction equation using 
fast and accurate elliptic solvers that require a rectangular computational domain. By superposition of a set of 
island Green functions, the solution is adjusted to ensure continuity of pressure around each island. The 
implementation is tested by comparison with an analytic solution for wind-driven flow in a closed basin similar to 
the southwest Pacific Ocean. 
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1. INTRODUCTION 

A new diabatic primitive equation model for studying regional and basin-scale ocean circulation 
processes has been described by Haidvogel et al. ' The model employs a 'sigma' bathymetry-following 
co-ordinate transformation in the vertical and a spectral vertical discretization procedure in which the 
structure of the model variables is represented as an expansion in a finite set of continuous basis 
functions. In the horizontal, boundary-fitted orthogonal curvilinear co-ordinates map moderately 
irregular lateral boundaries to a rectangular computational domain and the model equations are 
discretized using centred finite differences. Employing a horizontal mapping that retains a rectangular 
computational domain makes the code efficient on vector-processing computers and allows the use of 
fast and accurate algorithms for the solution of the two-dimensional elliptic boundary value problem 
governing the depth-integrated mass transport or streamhnction. 

Available fast elliptic solvers generally accommodate singly or doubly periodic, mixed derivative 
and specified (Dirichlet) boundary conditions, but these boundary conditions must be applied on the 
edges of a rectangular computational domain. Thus the present formulation of the Haidvogel ef al. ' 
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semispectral primitive equation model (SPEM) can be applied directly to ocean basins whose irregular 
boundaries can be represented adequately by the boundary-fitted orthogonal co-ordinates, including 
basins with singly or doubly periodic open boundaries. 

A feature of ocean regions that cannot be accommodated by the above elliptic solvers and boundary 
condition schemes is the inclusion of islands within the model domain. This requires the imposition of 
additional constraints on the streamfunction along contours within the computational domain. Also, in 
some applications with highly irregular lateral boundaries, orthogonal curvilinear boundary-fitted co- 
ordinates will have large variations in physical grid spacing. There comes a trade-off between 
maintaining adequate horizontal resolution in regions where the grid spacing is large and creating 
regions of fine grid spacing that place a severe limitation on the model time step.2 In such situations it 
may be desirable to ‘mask’ certain regions of the computational domain that correspond to land areas 
in the physical domain in order to give greater flexibility in the generation of the boundary-fitted co- 
ordinates. This situation also requires the imposition of additional boundary conditions on the 
streamfunction within the computational domain. 

The capacitance matrix method (CMM), so-named for its initial application in classical potential 
problems,334 is an algorithm for imposing additional conditions on the solution of a boundary-value 
elliptic problem at specified grid points in the interior of the computational domain. The algorithm 
effectively determines a modification to the right-hand side of the governing elliptic equation which 
will precisely satisfy the additional interior ‘boundary’ conditions. The algorithm has the advantage of 
retaining the ability to use fast and accurate elliptic solving subroutines at modest additional 
computational expense and has been favoured in recent oceanographic  application^^.^ for this reason. 

A brief summary of the primitive equations traditionally used in ocean circulation modelling is 
presented in Section 2, including a derivation of the elliptic equation for the mass transport 
streamfunction in orthogonal curvilinear co-ordinates. In Section 3 the CMM algorithm for solving the 
streamfunction equation is described. In problems where the total mass transport through the passages 
separating islands is not known a priori, it is necessary to adjust the solution according to the net 
circulation around each island generated by the model forcing. Section 4 describes the modification of 
the CMM solution required to allow for such island circulation by the superposition of a set of island 
Green functions. Finally, Section 5 presents an application of the algorithm to a simulation of the 
circulation in the subtropical gyre of the South Pacific where the flow is affected by the presence of 
islands. 

2. PROBLEM FORMULATION 

2. I .  The primitive equations 

In diabatic large- and regional-scale ocean circulation modelling it is traditional to solve the so- 
called primitive equations (e.g. Reference 7) derived from the Navier-Stokes equations under the 
Boussinesq and hydrostatic approximations. The Boussinesq approximation assumes that density 
variations do not contribute to the momentum balance except in the buoyancy force, which under the 
hydrostatic approximation is balanced solely by the vertical pressure gradient. The primitive equations 
may be written as 
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f3w 
dZ 

v * u+- = 0, 

dS as -+ u * VS+ W- = Fs + Ds, 
at dZ 

( 3 )  

where u is a vector of the horizontal velocity components, w is the vertical (z) velocity, po  is a constant 
background density, po  + p is the total density and f is the Coriolis parameter. Equation (1) expresses 
conservation of horizontal momentum, (2) vertical momentum, ( 3 )  mass, (4) temperature and (5) salt. 
T and S are related to p through an equation of state. Forcing and dissipation are represented 
schematically by the terms F and D. 

2.2. Orthogonal curvilinear horizontal co-ordinates 

In ocean-modelling applications the region of interest is frequently confined within irregular lateral 
boundaries. An efficient method of incorporating moderately irregular horizontal geometry is to use a 
boundary-fitted orthogonal co-ordinate system. For general orthogonal horizontal co-ordinates 5 and yl, 
physical arc lengths dsc and ds, and elemental distances d5 and dyl are related by dsc = (l/m)dt and 
ds, = (l/n)dyl, where m and n are the metric coefficients of the co-ordinate system.' Metric coefficients 
for arbitrarily shaped domains can be computed efficiently by conformally mapping the lateral 
boundaries to a rectangle and filling in the interior grid points by solving Laplace's equation.' By using 
appropriate angle-conserving map projections, a grid computed by this procedure in Cartesian co- 
ordinates can be mapped to the surface of a sphere to produce orthogonal co-ordinates suitable for 
large-scale ocean-modelling problems.* 

Using boundary-fitted co-ordinates also provides a method for increasing the computational 
resolution in areas of particular interest where this is advantageous for an accurate solution. For 
example, Figure 1 shows the co-ordinate grid used in the test simulations described in Section 5. The 
grid has relatively high resolution along the Australian cast which improves the simulation of the 
oceanic western boundary current, and lower resolution in the east where this is adequate for 
simulating the large-scale circulation of the subtropical gyre. 

2.3. Mass transport streamfunction 

Denoting a vertical average by an overbar, equation (1) may be written as 

where the vector R, represents all terms in the horizontal momentum balance except the gradient 
of the surface pressure ps.  Taking the curl of (6) gives 

= v x R,, 
dZ 
at 
- 

where 
z = v x u  

(7) 

is the depth-averaged vorticity. 
By assuming that the depth-averaged flow is horizontally non-divergent (the rigid lid 
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Figure 1. Orthogonal curvilinear grid fitted to the coastal boundaries of the southwest Pacific used in the example simulation in 
Section 5 .  Grid resolution varies from Ax = 20 km, Ay = 40 km near 30” S on the Australian coast to Ax, Ay = 100 km in the 

east of the domain 

approximation), a streamfunction 6 may be defined via 

- - m 89 n 86 
h d q ’  h a t ’  v = - -  M E - - -  (9) 

where u and v are the components of velocity in the directions 5 and v respectively and h is the depth. 
In orthogonal co-ordinates the vertical component of the curl of any vector A is 

Then substituting (9) into (8) gives the elliptic equation governing 6 in orthogonal curvilinear co- 
ordinates as 
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2.4. Numerical solution 

In practice, at each model time step the right-hand side of (1 1) is determined by integrating with 
respect to time the prognostic equation (7) for Z .  Then the solution to (1 1) is fully prescribed by 
specifying values for Y on the boundary. 

Many algorithms exist for solving numerically boundary value elliptic problems such as (1 1). In 
ocean models using finite differences of fixed spacing in Cartesian or spherical co-ordinates with 
irregular lateral boundaries accommodated by 'staircase' boundaries, (1 1) is frequently solved by 
relaxation methods such as successive overrelaxation (SOR) or preconditioned conjugate gradient 
(PCG) (e.g. Reference 10). SOR can be prone to gradual instabilities and poor convergence in some 
situations'' and more accurate algorithms are preferred if they are available. Blayo and Le Provost6 
have implemented the CMM in concert with a Fourier analysis<yclic reduction (FACR) fast 
Helmholtz equation solver to accommodate irregular coastal boundaries (but not islands) in a quasi- 
geostrophic ocean model. They found that the CMM-FACR combination retains the accuracy of the 
FACR method in a rectangular domain (relative error of order lop8) and that CMM-FACR performed 
I 1 -5 times faster than PCG taken to comparable accuracy and three times faster than PCG taken to 
order accuracy. 

In SPEM applications where a simple idealized geometry (namely, constant depth and metric 
coefficients m and n not functions of q and ( (respectively) renders (1 1) separable, fast direct solvers 
from the FISHPAK library of FORTRAN subroutines'2 have been used for the solution. In general 
applications where the elliptic equation is not separable or the memory demands of a direct solver are 
prohibitive, an elliptic solver based on the multigrid method from the MUDPACK library13 has been 
favoured. 

The FISHPAK and MUDPACK elliptic solvers accommodate singly or doubly periodic, mixed 
derivative and specified (Dirichlet) boundary conditions, but these boundary conditions must be 
applied on the edges of the rectangular computational domain. In order to extend these algorithms to 
accommodate masked land areas contiguous to the perimeter of the domain or islands within the 
domain, modifications to the procedure for solving (1 1) are required. The CMM is one such algorithm. 

3. THE CAPACITANCE MATRIX ALGORITHM 

The capacitance matrix method is described fully here with slightly varied notation from that of 
Milliff,' because there are several differences between the present problem formulation and Milliff's 
with respect to boundary conditions and the inclusion of island circulation. 

3. I .  Problem statement 

The notation describing the subregions and boundanes of the computational domain is depicted in 
Figure 2. The full domain is denoted R and is comprised of subdomains Ro, the ocean region, RM, the 
mainland (which is any land area contiguous to the perimeter), and QI, the islands. The perimeter of 
the computational domain is denoted 6 and is comprised of 6P, the perimeter of the ocean region, and 
6E, the exterior of the mainland region. Land regions are separated from the ocean by boundaries 6M 
of the mainland region and 61 for the islands. There will be Nl of the QI subdomains and 61 boundaries, 
one for each of the NI islands. In addition, 6C denotes all coastlines within the interior of the 
computational domain, i.e. 6C = 6M + xy!, 61, and 6 0  denotes the physical boundary of the 
multiply connected ocean, i.e. 6 0  = 6P + 6C. 

The elliptic problem to be solved may be stated as 

Y Q = Z  (12) 
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6 (outer boundary) 

R (whole domain) 

6I  

Q O  

P 
6E' 6P4 

Figure 2. Schematic of the subregions and boundaries of the computational domain 

in the region slo subject to Y(60) prescribed. Here 8 is the two-dimensional differential operator 
corresponding to (1 1). In applications where there are no mainland or island areas to be masked, i.e. 
6 0  = 6P, (12) can be solved numerically with a fast elliptic solver of the class discussed above. In 
applications where there are land regions to be masked, the CMM is employed to enforce prescribed 
values of Y along 6C. 

3.2. Discrete formulation 

The convention followed so far is that two-dimensional variables that are continuous functions of the 
horizontal co-ordinates ( 5 ,  q) are written as uppercase Greek or Roman characters, e.g. Y, Z. When 
these are discretized onto the numerical grid as 2D matrices, they will be denoted in boldface, e.g. Q, 
Z. Vectors corresponding to discrete subsets of 2D fields, such as Q along a coastline boundary, will 
be denoted by superscripted lowercase characters. For example, $SM denotes the values of Q at the 
grid points defining the mainland boundary 6M.  Operators that project the 2D fields onto these 
boundary node vectors will be indicated in superscripted uppercase. For example, the boundary 
projection operator that returns the values of Q along 6M is denoted BaM and thus 

BdMW = $". (13) 

Defining L to be the discrete analogue of the differential operator 3 in (1 2), the problem is to find a 
solution to 

L Q = Z  (14) 

in the region !& that satisfies boundary conditions on The boundary conditions will be a 
combination of Y = constant on solid land boundaries and, where 6P is ocean, open boundary 
conditions that could be any of singly or doubly periodic, mixed derivative or prescribed (according to 
e.g. a radiation condition). The boundary conditions on the interior coastlines, namely $'c, will be 
denoted here by a vector b. Typically Y on the mainland and ocean perimeter is assigned a constant 
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value ko and Y on each island individual constant values kr. Then b will be of the form 

where each e is a vector of ones of length the number of boundary nodes defining that section of 
coastline, whether it be mainland (M) or island (4. The boundary conditions on (14) along SC may 
then be written as 

(16) 
6C I) = b. 

Prescribing the kr is equivalent to stating that the mass transport between each island is known a priori. 
The situation in which the kr evolve with time is treated in Section 4. 

3.3. Implementation 

The CMM obtains the solution to (14) in two steps. First aparticular solution Yp is obtained which 
satisfies vorticity forcing and boundary conditions on the perimeter of the computational domain. Then 
a homogeneous solution Y H  is obtained and superposed with Yp so that the final solution 
Y = Yp+ YH also satisfies the boundary conditions on the interior coastlines SC. 

3.3.1. Particular solution. 
Computing Yp is straightforward. It is the solution to 

L Y p  = z (17) 

in the region R that satisfies the perimeter boundary conditions, i.e. I); = I)' = B". This solution is 
obtained by direct application of a fast elliptic solver. The values of Z in the land regions 
(Rw + xy= 0,) and of I);E = B d E Y p }  are arbitrary and may be taken as zero. 

3.3.2. Homogeneous solution. 

everywhere else. Then Y G ~  is the influence function for node n and satisfies 
Let Z G ~  be a vorticity-forcing function having unit value on boundary node n of SC and zero value 

in R subject to I)& = B ' Y G ~  = 0 (i.e. homogeneous boundary conditions) or periodic conditions if 
these are being applied on any part of SP. Equation (1 8) is solved with a fast elliptic solver. W\~rc" is 
effectively a discrete Green function for boundary node n. There will be NB such functions, where NB 
is the number of grid points defining 6C. The homogeneous solution is a weighted sum of influence 
functions, i.e. 

n =  1 

where the weights w, are to be determined so as to enforce the additional boundary conditions on SC. 
Note that the vorticity sources are located on the boundary SC and do not fall within the region Ro. 
This ensures that L WH = 0 in Ro and the superposition of the solutions WH and Wp still satisfies (14). 
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Applying the boundary node projection operator for the interior coastlines (BaC) to (19) gives 
NB 

$E f B * ~ Y ~  = C B'~YG,W,, .  (20) 
n =  1 

Forming a matrix K whose columns are BaCYGn, and denoting a vector of the weights w, by w, (20) 
may be written as 

$f = Kw. 
From the superposition of particular and homogeneous solutions it is required that the boundary 
conditions (1 6) along 6C are 

+ $"," = b. (22) 

(23 1 
Substituting (21) into (22) and rearranging, a solution is obtained for the influence function weights: 

w = K-'(b - $p ) .  
K-' is referred to as the capacitance matrix. At each model time step the matrix multiplication (23) 
must be performed to evaluate w. However, it is impractical to store the NB influence functions YG" and 
multiply these by w to get YH at every model time step. Rather, the right-hand side of (14) is 
augmented with a vorticity-forcing field 

6C 

N .  

n =  1 

consisting of the weights w,, distributed along the boundary 6C. Then the solution to 

Ly = z f ZH 

in Q subject to boundary conditions $* will be precisely YP+ YH. Equation (25) can be solved 
directly with a fast elliptic solver, because the boundary conditions are prescribed only on the 
perimeter of the computational domain 6. 

(25 1 

3.4. Computational considerations 

The solution procedure effectively finds the vorticity field ZH that added to the right-hand side of 
(14) produces a solution that satisfies the boundary conditions on the interior coastlines. In the absence 
of any interior coastal boundaries (i.e. 6 = SO) Yp would be the complete solution for the 
streamfunction. At each model time step the additional computational expense in applying the 
capacitance matrix method when interior boundaries are present is the evaluation of the matrix product 
(23) and the re-evaluation of the elliptic solution with the new vorticity forcing Z + ZH. There is also 
an additional step at initialization. The capacitance matrix K- ' depends on the influence functions for 
the particular problem, which do not alter as the solution evolves in time. Thus the YG" are calculated 
once at initialization by the fast elliptic solver and the matrix K evaluated, inverted and stored. K-' has 
as dimension the number of grid points defining the discretized interior coastlines (Ns), which might 
typically be of the order of 100 points. Our experience with the SPEM is that the initialization overhead 
and the multiplication (23) are insignificant and the second elliptic solve at each time step increases the 
computation time by about 30 per cent. This is for model resolutions of the order of 100 X 100 grid 
points and seven vertical modes. For higher vertical resolution the overhead will be proportionately 
less, because the streamfunction calculation is independent of vertical resolution. 

We emphasize here that the CMM is quite general and can be used with fast elliptic solver 
subroutine libraries because it modifies only the right-hand side of the elliptic problem. An alternative 
approach to enable the use of a fast multigrid solver was adopted by Jensen,14 who developed several 
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strategies for interpolating the masked land region to the differing resolution grids at each level of the 
multigrid iteration cycle. The interior boundary conditions were imposed by tracking land points and 
setting the streamfunction value explicitly during each iteration. 

4. MODIFYING THE SOLUTION TO ALLOW FOR AROUND-ISLAND CIRCULATION 

In Section 3.2 it was assumed that kI, the value of Y on each island, could be specified a priori. In 
general this is seldom the case, since the transport between the islands evolves with time in response to 
the forcing and is determined by the condition that the surface pressure must be continuous, following 
any closed path around each island. 

A consequence of the rigid lid approximation is that the surface pressure p s  is not camed explicitly 
in the model. Therefore its effect on the circulation around each island is inferred by a line integration 
of the depth-averaged momentum balance. Around any closed path s 

which implies from (6)  that 

where 

l-1 = fI U - ds (28 ) 

is the circulation following the chosen path around island 1. Equation (27) is integrated at each time 
step to give r, for each island at the new time level. 

Let 6 denote the solution to (25) obtained by the CMM and i.1 the corresponding island circulation 
values. Substitution of (9) into (28) gives 

where r is an inward-directed normal to the path of integration. The discrepancy between rI and i.1 can 
be amended by adding to @ a weighted sum of island Green hnctions YI, defined as the solution to 

991 = 0 (30) 

in Ro subject to YI = 1 on island Z, zero on all other islands and the mainland and either zero or 
periodic conditions on the appropriate portions of the perimeter. Here 9 is the same operator as in 
(12), so the Y,  are readily computed by the procedure described in Section 3. 

A weighted sum of YI will add 

J = l  

to the circulation around island I,  where w; are the weights and 

is the circulation induced around island Z due to YJ. Adopting vector notation, the circulation that must 
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be added to the present solution is l' - and therefore the required set of weights is given by 

W* = C - ~ ( I -  - r), 
where the island interaction matrix C-' is the inverse of a matrix with elements C,, 

The complete solution allowing for island circulation is then 
N ,  

(33) 

This adjustment is applied only to islands for which the streamfunction is unknown a priori. For these 
islands the constant streamfimction boundary conditions Q introduced in (1 5) are arbitrary and may be 
taken as zero. 

The Y, are dependent only upon the model geometry and may be computed once at model 
initialization and stored. For example, the Green fimctions for the three islands in the southwest Pacific 
test case in the next section are shown in Figure 3. The island interaction matrix C-' is similarly 
computed only once and stored. 

In other ocean  model^'.^^,^^ the circulation condition (27) is used to form an equation similar to (33) 
but for the values of Y itself on the islands. The island Y-values are then explicitly included in the 
discretization (e.g. SOR, PCG or multigrid) of the governing equation at each iteration of the solution 
procedure. 

5. EXAMPLE 

As an example of the performance of the CMM in the SPEM, we present the results of wind-driven 
ocean circulation simulations in an idealized representation of the Tasman and Coral Sea region of the 
southwest Pacific Ocean (Figure 1). All the perimeter boundaries are closed and the basin has a 
uniform depth of 2000 m. Steady wind forcing is applied that is similar in strength to the annual mean 
east-west component of wind stress observed in the central South Pacific. No north-south component 
of wind stress and surface fluxes of heat or salt are applied. Initially the ocean is at rest and the vertical 
temperature and salt stratification is similar to the observed profiles averaged over the region. 
Simulations have been conducted with and without the islands of New Zealand, New Caledonia and 
Fiji to illustrate the effect of these islands on the wind-driven circulation. A test of the CMM is 
provided by comparing the model streamfunction with that computed from a simple Sverdrup 
calculation using linear wind-driven dynamics and the 'island rule' of Godfrey.16 

New Zealand New Coledonio Fiii 

I 

Contours from 0.075 to 0.975 by 0.05 

Figure 3 .  Green functions Y, for the three islands in the southwest Pacific example 
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The Sverdrup solution assumes a steady balance between the wind stress and the Coriolis force 
acting on the depth-integrated transport in an ocean of uniform depth. This balance produces a 
circulation in the ocean interior that is equatorward (poleward) in regions of positive (negative) curl of 
the wind stress. Friction is assumed to play a role only in boundary currents that close the transport of 
the interior circulation. 

Figure 4(a) shows the Sverdrup circulation in the closed basin geometry of Figure 1 for the given 
latitudinal distribution in wind stress. Negative contours indicate a counterclockwise sense to the 
circulation. The closure of these contours along the western, northern and southern boundaries is not 
shown, since this closure is assumed to occur in boundary currents of arbitrarily small width. Figure 
4(b) shows the effect of including the three islands. The islands interrupt the westward propagation of 
Rossby waves and lead to the formation of boundary currents on the east coast of each island, with a 
consequent weakening of the boundary current on the western boundary of the basin. This is most 
pronounced for New Zealand, where mainland and island boundary currents are connected by an east- 
west jet at the latitude of the northern tip of New Zealand. 

Figure 5 shows the corresponding model solutions at day 1000 when the model momentum 
equations are linearized, lateral friction is kept small and bottom friction is zero, to make the model 
dynamics as close as possible to the Sverdrup solution approximations. In both cases the solutions are 
very similar to the Sverdrup solution, especially in the ocean interior. In the model the narrow frictional 
boundary currents are resolved and show that water leaving the western boundary current moves 
slightly northward before joining the interior Sverdrup circulation. This fcature of the circulation is 
known from analytic solutions to the barotropic vorticity equation by Munk" when a no-stress lateral 
boundary condition is applied along the coast. 

The CMM successfully achieves a constant streamfunction along each island coastline to within a 
relative error of typically For the case of New Zealand this corresponds to a maximum mass sink 
or source at the coast of less than 2 m3 s - ' .  

The streamfunction values on the three islands for the model solution are compared with the 'island 
rule' solution in Figure 6. The model solution varies in time owing to transients generated when 
starting the model abruptly from rest. These are not damped appreciably because of the very weak 
lateral friction applied in order to duplicate the inviscid Sverdrup solution case as closely as possible. 

-:I 
-0.1 0 0.1 

Figure 4. Streamfunction solution predicted by Sverdrup dynamics for wind-driven flow In an idealized ocean basin analogous to 
the southwest Pacific. The latitudinal profile of wind stress is shown on the right in Pascals. (a) Without and (b) with the presence 

of the islands of New Zealand New Caledonia and Fiji. Contour interval is 2 X lo6 m3 s-' 
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(b) 

Figure 5.  For linear model dynamics, the streamfunction after 1000 days for the cases corresponding to Figure 4 

Nevertheless, it is evident that the mean island streamfunction values are close to the Sverdrup solution 
values, indicating that the island Green function adjustment of the CMM solution achieves the correct 
transport between islands. 

2 

.o 0 

E -2 

-4 

c 

P 
+ 

c ; 
m 

900 910 920 930 940 950 960 970 980 990 1000 
days 

Figure 6. Solid curves: streamfunction (X106 m3 s-I) on islands of New Zealand (NZ), New Caledonia (NC) and Fiji in 
southwest Pacific test case for days 90&1000 of simulation. Broken lines: corresponding solutions from Sverdrup dynamics 

‘island rule’ 
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6. CONCLUSIONS 

The capacitance matrix method has been implemented in the SPEM to allow the inclusion of masked 
areas of land such as islands and coastal promontories. Used in conjunction with the SPEM’s 
boundary-fitted orthogonal curvilinear co-ordinates, the method enables the efficient use of fast and 
accurate (e.g. multigrid) algorithms that require a rectangular computational domain when solving the 
elliptic equation governing the streamfunction. 

The requirement that the surface pressure field be continuous, following any closed path in the 
ocean, applies a constraint on the circulation around each island that must be satisfied at each model 
time step. This is handled by superposing with the CMM solution a set of island Green functions 
whose amplitudes are determined by solution of an island interaction equation. 

The initialization and island interaction steps of the method impose minimal additional 
computational cost. The necessity for a second application of the fast elliptic solver at each time 
step adds approximately 30 per cent to the model execution time for typical three-dimensional ocean 
circulation problems. 

The implementation has been tested successfully by comparing the model and an analytic solution 
for wind-dnven flow in an ocean domain similar to the southwest Pacific that includes three islands. 
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APPENDIX: ACCESS TO THE SPEM SOURCE CODE 

The Fortran source code for the SPEM,’ which includes the CMM implementation described here, is 
freely available over Internet by anonymous ftp (user ftp, e-mail address as password) to host 
ahab.rutgers.edu (IP number 128.6.142.5) in directory pub/spem/src. The formulation and 
configuration of the model are described in detail in the SPEM user’s manual.’* 
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